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The main poblem in least-squares estimation of a nonlinear function is to find starting 
values for the mathematical iterative process. In this paper, we describe an algorithm which, 
in the case of a sinusoidal signal, is free from this restriction. 

1. OUTLINE OF THE PROBLEM 

In most space experiments, the spacecraft (rocket, satellite, or balloon) is spin 
stabilized. As a consequence, measurements made on board are modulated at the spin 
frequency and appear in the form of sinusoidal signals (generally with noise) the 
characteristics of which are slowly varying with time. The physical quantity one tries 
to measure has a magnitude given by the amplitude of the sinusoid and a direction. in 
the case of a vectorial quantity such as an electric or magnetic field, given by the 
phase of the signal. Thus, we are faced with the problem of estimating parameters of 
a sinusoidal signal. Let 

s(t) = Jd cos(wt + 4) + c. (1) 

Many works have been devoted to this “hidden periodicity” model. It was 
recognized a long time ago that the number of nonlinear parameters can be decreased 
by expanding the harmonic component in the form 

s(t) = A cos wt + B sin WC + C, 

where w is the only nonlinear parameter. 
If we have a priori knowledge of the frequency f = w/27r, estimation of A, B, and C 

by the least-squares method is a linear problem presenting no difftculty. Unfor- 
tunately, we are generally not in such favourable circumstances. Two methods of 
attack seem possible: 

- To determine first the frequency by one of the existing methods, spectral 
analysis [ 1,2] or the maximum entropy method [3,4], and then deduce A, B, and C 
by a linear regression. The drawback of spectral analysis is the need for a large 
amount of data and a rather poor resolution of the frequency. The maximum entropy 
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method has a good resolution, even with a limited amount of data, but gives a biased 
estimate of the frequency [5]. Its results are compared with those of the proposed 
method in Section 5. 

- To proceed directly to a nonlinear least-square estimation [6, 71. Problems 
in that case result from the possibility for the mathematical equations to have several 
solutions. The result then depends crucially on the initial guess, which must be close 
to the true value. 

In this paper, we describe an algorithm which, in the case of sinusoidal signals, 
allows one to be free from the limitation due to the initial guess and to find 
satisfactory estimates of the parameters with a minimum of a priori information. All 
qualities of the estimators are not fully demonstrated, but the method is a posteriori 
justified by the success of its application. We begin with a summary of least-squares 
estimation in the case of a nonlinear problem (Section 2); then we describe the prin- 
ciples of the proposed algorithm (Sections 3 and 4); the method is tested on simulated 
data and applied to true data (Section 5). 

2. ESTIMATION OF PARAMETERS BY THE METHOD OF LEAST SQUARES 

Let the interpretative model be 

s(t)=Acoswt+Bsinwt+C. 

The problem is to deduce, from observations 

(2) 

y(t) = s(t) + n(t), (3) 

where n(t) is noise, an estimation s” of s, defined by estimations 2, B, c, and (3 of the 
parameters of the model. In what follows, we suppose that 

- the model is true; 
- time (the independent variable) is measured without error; 
- observations are made on the time interval [0, T]. 

Moreover, as it is physically reasonable, and to make computations simpler, we 
assume that the noise is white. 

Under these assumptions, estimation according to the least-squares method consists 
in looking for values /?, B, c, and c3 of the parameters such that the sum of the 
residues 

S = (’ (s(t) -y(t))’ dt = Jr c’(t) dt 
0 0 

(4) 

is minimized. 



ESTIMATION OF A SINUSOIDAL SIGNAL 349 

Mathematically, this is equivalent to solving the system of equations 

(54 
(5b) 
PC) 
(5d) 

Theoretical properties of the estimators were studied by Walker [8], who showed 
that, for stationary noise with zero mean, finite variance a* and no temporal 
correlation: 

- A, B, and 137 are consistent; 
- and their joint distribution is asymptotically normal and unbiased, with 

mean (A, B, w) and covariance matrix 

A2+4BZ -3AB -6B -- - 
m m ---T- m 

20* -3AB 4A2+B2 6A --. 

I I 
-- 

A*+B* m m -z 
m , 

-6B 6A 12 -7 
m 

7 - 
m m3 

(6) 

where m is the number of observations. With these results, practically no theoretical 
problem remains in the application of the least-squares method to the harmonic 
model. The last difftculty is to obtain an estimate of (3. 

The system of equations (5) is not linear and generally has several solutions. In 
fact, what we want to find is the absolute minimum of S and not only a local 
minimum, Classical methods of solving such a system consist in an iterative process 
starting from an initial guess (A,, B,, C,, wi) of the parameters’ vector, differences 
between them coming from the iterative process adopted (steepest descent, Newton’s 
method, Gauss’s method, etc.) [9]. 

The iterative process converges to the true solution only if the guess vector is not 
too far from it. As an illustration, we have used the program BSOLVE from 
Marquardt [lo] on a signal without noise: 

y(t) = A cos(wt + 4) = A cos(2nft + 4) 

with A = 1 w=2n or f=l 
$4 = 0.2 

sampled at 100 points per period. In order that the program converge to the true 
solution, we need to take the guess valuef, off between 
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0.7 and 1.5 when T = 1 set (I period), 
0.9 and 1.1 when T = 5 set, 

0.995 and 1.055 when T= 20 sec. 

Thus, it is clear we need a rather good approximation of the frequency to get the 
method to work correctly, all the more as we intend to use a large number of data. 
But on the other hand, we need a large interval of data when the noise increases and 
when, as a consequence, our a priori knowledge of the parameters decreases. 

The main object of the algorithm we describe now is principally to overcome this 
difficulty. 

3. DERIVATION OF THE METHOD 

3.1. Elimination of the Linear Parameters 

For a given value of the frequency (3, the solution of (5a) to (5~) is a linear 
regression problem which can be solved algebraically. Solving formally the partial 
system, 

as as as -o -y=----- 
ZTaB aC (7) 

and substituting its solutions J(G), B(6), and C?(6) in S(C& A, a, c), the sum of 
squares is now expressed as a function of only one variable: 

Y(c3) = S(G, fqcq, B”(fq, C(G)). (8) 

The method proposed by Lawton and Sylvestre [ 111 to eliminate linear parameters in 
nonlinear regression is based on similar considerations. 

Now, we can find the zero of dY/dc3. It is given by 

(9) 

which, taking account of (7), implies &S/a6 = 0. 
Thus it is demonstrated, in the simple case of a sinusoidal signal, that the solution 

of (9) is mathematically equivalent to that of the initial system (5). A more general 
demonstration is given in Golub and Pereyra [ 121. 

However, if the initial problem has been reduced to the determination of the single 
parameter (3, the difficulty caused by the need of a good initial guess remains. 

3.2. Delimitation of the Frequency Range 

Let us now show that in the case of a noisy sinusoidal signal, it is possible to 
determine a frequency range (cuA, L()~] in which the sum of squares ,Y (6) exhibits its 
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absolute minimum and no secondary extremum, which solves the initial guess 
problem. 

The proposed method is based on the fact that, for sufficiently large values of COT, 
finding the minimum of 

S(0) = jr [y(t) - C(t)]* dt 
0 

is equivalent to finding the maximum of 

F(3) = j’y(t) Z(t) dt, 
0 

F(G) being evaluated for fixed, but arbitrary, values of 2, 6, and 2; (see 
Appendix A). The practical interest of this result is due to the fact that the study of 
F(G) is simpler than that of Y(G). 

Substituting y(t) (Eq. (3)) and C(t) (Eq. (1)) in the expression of F(G), we find 

F(G) = D(c3) + N(c3), 

where D(G) = ll s(t) f(t) dt is the deterministic part of the function and 
N(G) = I,‘n(t) Z(t) dt is a random term describing the effect of noise. 

It can be shown (see Appendix B) that D(6) is pseudo periodic with period 2n/T 
and has its maximum near the true value c3 = w provided that the two following 
conditions were satisfied: 

(lo) wTIcos(& #)I 9 1, (10) 

(27 $1 cos(& #)I * c. (11) 

These conditions imply that ) $- 41 differs from n/2 and that C, the true value of 
the zero shifting, is small compared to the amplitude of the signal. Under these 
conditions, and due to its pseudo periodicity, D(6) attains no other maximum in a 
4n/T wide interval of values of 6 surrounding o. Thus it is possible to determine a 
frequency interval [w,, w,] on which the only extremum of D(6) is the maximum 
near o, and this without any assumption concerning the values of 2, f, and ‘c. This 
interval also contains the main minimum of Y’(G) and in principle may be kept small 
enough to let it be the only extremum of Y(G) on it. Experience shows that an 
interval of width 27r/T is generally suitable. 

The condition (11) concerning the shifting of the zero is not so restrictive as it may 
seem. In fact, this quantity generally has no physical interest and is small when 
compared to the amplitude. If unluckily it were too large, we would just have to take 
for the new origin the average value of the signal; the residual shifting of the zero is 
then small enough to verify condition (11). 
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The effect of the random part N(G) is described in Appendix C, where we sho.w 
that the signal-to-noise ratio increases like T”‘, i.e., like the square root of the 
number of observations, which is a classical result. 

3.3. Description of the Method 

Now we are able to describe the proposed method. 
The first step consists in determining the frequency range [ma, wB ] on which 

7 (w) has only one extremum which is its absolute minimum. It is performed by 
giving arbitrary values to J?‘, & and c’ and determining the maximum of F(G). If 
necessary, we first take as the new origin the average value of the signal to satisfy the 
condition (11). As we must avoid the case I$ - $1 = 7r/2, we compute IF(G at 
intervals of 2x/(3 7) in frequency, for two values of the estimated phase i differing by 
742. Maxima are found,respectively, at (3, and (3,. We know that if conditions (10) 
and (11) are verified, at least one of these extrema belongs to the convex domain 
surrounding the main extremum of F, but we cannot be quite sure it corresponds to 
the higher value. The situation is described in Fig. 1, where we have represented the 
isocurves of I D(&)l and schematically shown computations. To remove the 
ambiguity, we compute I F(G3,, &)I and I F(c3,, &)I with a sampling in f with a step of 
n/l0 between -42 and +7r/2 and look again for the extrema. Thus, we get a point 
which is less than n/(37’) in frequency and 7r/20 in phase from the main extremum, 
and in general it will give a value of F larger than the secondary extrema. 

FREQUENCY 

FIG. 1. Schematic representation of the method. We have represented the isocurves of lF(G, $)I. P is 
the main extremum. IF(B)1 is tabulated at three points per pseudo period for f= 6, and $= q&, giving 
respectively maxima M, (6 = C,) and M, (3 = O*). We then tabulate IF($) for (3 = (3, and ~5 = G3,, 
giving maxima N, and N, . If conditions (12) and (13) hold, the larger maximum (N, on the figure) 
belongs to the convex domain surrounding I’. 
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Let Gi be the frequency of that extremum. We look for the minimum of .7 (G) 
belonging to the interval ]wA, wB] with 

co* = G3, - @c/T), 
COB = c.Gi + @r/T). 

During this second step, we compute the root of ,Y ‘(w) = 0 numerically, as 
described in Section 3.1. Apart from noise effect, it may be determined with arbitrary 
precision, for instance, by the halving method. 

At this point, two theoretical problems remain. The first one is to establish 
properties of the estimator (5, if we do not want to content ourselves with its 
asymptotic properties. 

The second point is that, to have a linear problem, we estimate A’ and L? of model 
equation (2) when the physical parameters are &?’ and i of model equation (1) which 
are computed by the formula,. 

.!2 z.r (A”2 + py, 

$= arctan(-B/X). (12) 

To be rigorous, we would derive the distribution functions of J? and $’ from those of 
2 and B. In fact, computations to get the qualities of the estimators are very 
dependent on the assumptions concerning the noise. Moreover, even with simplifying 
assumptions such as gaussian noise, they are nearly inextricable. This is why we 
preferred to test the algorithm on simulated data rather than to perform a difficult 
and yet limited analytical study, 

4. DESCRIPTION OF THE ALGORITHM 

The flow chart of the computation is shown in Fig. 2. Let us comment on it. 
The starting table contains sampled data yi = y(t,) (i = 1 to N). The first step 

consists in determining the frequency range [w, , oB] surrounding the true value. Two 
starting values wi, o2 are used such that we have 

w,<w,<o,<w,. 

Without other information, we know that the frequency must be less than the Nyquist 
frequency f, =-f-f, = 1/(2dt) (f, being the sampling frequency) and that the data 
length T must be equal to or greater than, say, half a period; we can thus assume 

co, N n/T, 

w2 N w, = n/At. (13) 

We give arbitrary values to J?, 6, and c, for instance, .c? = 1, $= 0, 2; = 0. 
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I Table of data I 

determination of the 
maxlm”n-0 for two values 

of F 
I 

Evaluation of o,snd ob 

I 

N=N+l 

: 

Output Of the results 

FIG. 2. Flow chart of the program. 

Starting from w2, we compute 

N 

F(Uj) = C y(ti)[2 COS(Ujti + $J) + 2'1 
i=l 

with three points per pseudo period, i.e., for 

o,=w*-$(j- 1) such that wi E [w, , w2 ] 

and evaluate the value wk for which IF( is maximum. The same computation is 
made with p = i+ (7r/2) and gives a maximum for another frequency w;. We know 
that at least one of these frequencies should be at a distance from w less than r/T, if 
T and C are such that conditions (10) and (11) are verified (both values may be 
right, if neither $ nor &’ differs from 4 by about 7c/2). 

To determine the best value, we use the sweeping in phase described in the 
discussion of Section 3.3. 
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We compute ]F(w,, #j)] and ]F(w;, 9j)l with #j varying with a step of n/l0 between 
-42 and +7r/2. We keep the value of o which leads to the maximum value. Let it be 
WO. 

The frequency range surrounding the solution is taken as 

wA = w. - n/T, 

w, = w, + nf T. 
(14) 

We have now to find the zero of Y’(w) belonging to the interval [wA, w,]. We 
first check that we have, as expected, Y’(w,) . Y’(wB) < 0; otherwise, we can 
repeat the first step of computation with a better description of F(w) (more than three 
points per pseudo period). 

The zero can then be determined by any numerical method. Although it is 
probably not the most efficient, we have used the halving method which allows a 
knowledge of the precision with which it is known. We have 

Y(w) = 5 [(y, -A(w) cos wt, -B(w) sin wri - C(w)]* 
i=l 

(15) 

and taking into account that A(w), B(w), and C(w) are solutions of the system (9). 

dY7 
x = 2 fJ [ yi -A(W) COS Wti - B(W) sin Wti - C(W)] 

i=l 

[A(w) ti sin wti -B(w) ti cos wti]. 

The calculation is stopped when we have simultaneously 

I-i”‘(%l < E, 
l%-Ww,-,I (Em9 

with E and E, two arbitrary parameters of precision. The estimations of the 
parameters of the model are 

fs=w,, 
A = Al(w,) B = B”(w,) c = a&), 

&7 = (22 + B”2)1/2 d;= arctan(-B/J). 

5. APPLICATION OF THE ALGORITHM 

5.1. Application to Simulated Data 

In order to test the applicability of the algorithm, we applied it so simulated data, 
the parameters of which are known and controlled. The simulated data are of the 
form 

YW = 40 + n(t), 
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with s(t) = .J/ cos(wt + 4) + C, where 

d= 1, 
0 = 2R, 

4 = 35” = 0.6 1 rad, 
c = 0, 

and n(t) is noise of various types. 
All computations have been made with double precision on an IBM 370/168. We 

can therefore look at the effect of a change of 

- the noise level, 
- the length of the signal, 
- the sampling frequency.- 

a) 

b) 

Time 

FIG. 3. (a) Sinusoidal signal with gaussian noise (zero mean, u = I). (b) Sinusoidal signal with 
positive impulses of noise. (c) Sinusoidal signal with noise presenting memory. 
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TABLE I 

Effect of Increasing the Noise Level, T= 10 set 

0 1 35 1 
0.5 0.96 36 0.999 
1 0.92 39 0.998 
2 0.84 43 0.995 
2.5 0.81 46 0.994 

3 0.97 64 0.98 
4 0.988 77 0.978 
4.5 0.988 84 0.97 

0 
-0.01 
-0.03 f, = 51.11 Hz 
-0.07 
-0.09 

10m4 
10.’ f,=91.11 Hz 
,O~., 

1. Sinusoidal Signal and White Gaussian Noise (Fig. 3a). The most systematic 
work has been done for white gaussian noise, with zero mean and standard deviation 
CJ, as considered in the theoretical analysis presented in Sections 2 and 3. 

The length of the signal, T, has been varied from 1 to 17 periods, the sampling rate 
from 9 to 100 points per period, the standard deviation of the noise u from 0 to 
4 times the amplitude of the signal, 

It is clear that the relation which may exist between the signal frequency and the 
sampling frequency is not without any effect on the estimation. For instance, if the 
sampling frequency is a perfect multiple of the signal frequency the amelioration of 
the stimation due to an increase of T will be less. We did not try to study this effect 
in detail, but, in order to avoid it as much as possible, sampling frequencies have 
never been multiples of the signal frequency. 

We present below some results showing the behaviour of the algorithm. 

Eflect of the noise level: Estimation was made on a signal length of 10 periods with 
u varying from 0 to 4.5. The sampling rate is 5 1 points per period up to u = 2.5. 
Above this level of noise, estimation is no longer possible with this sampling rate and 
we used 91 points per period. The results are given in Table I. 

As expected, estimation becomes poorer when the noise increases, particularly that 
of the phase; the frequency is rather good in any case. 

Effect of the signal length: The length of the signal has been varied from 1 to 
17 periods, with a fixed sampling rate of 41 points per period, and two levels of noise: 
a moderate one (a = 1) and a high level (a = 4). The results are given in Table II. 

In both cases, the estimation is better when T increases, the improvement in the 
estimation of the phase being the lowest. 

Note that when u = 4, the results of the algorithm are not reliable for T < 10. 

Effect of the sampling rate: With T = 5 and u = 1, we have varied the sampling 
rate from 10 to 100 points per period. The results are in Table III. 

There is an improvement of the estimation of c3 and i when f, increases. But a 
definite improvement of the estimation of J?’ is not apparent. 
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TABLE II 

Effect of Increasing the Signal Length, f, = 4 1.1 Hz 

o=l u=4 

T .2 d (3/2n e 2 i cj/Za c 

1 No convergence of the method 2.1 96 0.86 0.9 
2 1.18 41 1.03 0.1 I 2.25 45 1.10 0.5 
5 1.04 56 0.98 0.05 1.17 -1 2.82 0.24 

10 1.05 44 0.996 0.03 1.25 63 0.991 -0.12 
17 0.992 44 0.997 0.01 1.004 67 0.990 -0.03 

TABLE III 

Effect of Increasing the Sampling Rate, T = 5, u = 1 

10.24 1.02 61 0.98 0.08 
20.48 0.8 42 0.996 0.10 
41.11 1.04 56 0.98 0.05 
61.46 0.94 43 0.992 -0.003 

102.43 1.02 33 0.999 -0.04 

2. Other Types of Noise. In the previous sections, we limited ourselves to white 
gaussian noise. Without undertaking an exhaustive study, we now want to see how 
the algorithm works in the presence of different types of noise. 

Gaussian noise is theoretically justified by the central limit theorem as the result of 
a large number of independent sources. To simulate a predominant source of noise, 
for instance, electrical interferences due to the operation of a relay or some other 
electrical device, we have added impulses of large amplitudes distributed according to 
a Poisson process to the signal, both with random sign (Table IV, column 2) and with 
a systematic sign (Table IV, column 3 and Fig. 3b). 

Moreover, a data recorder is always of limited frequency bandwidth. As a conse- 
quency, white noise is physically only an approximation. To investigate the effect on 
the estimation of a time persistence of the noise, we have used the model of noise: 

b(ti)= 5 Ujn(ti-j), 

j=O 

with n(t,) a sample from a normal population with zero mean and standard deviation 
u = 1 (Fig. 3~). Two such models have been considered, differing by the al 
parameters and corresponding to different degrees of persistence. The results are in 
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TABLE IV 

Influence of the Type of Noise, T = 5, A, = 4 1.111 

1 2 3 4 5 

J 1.04 1.007 0.993 0.155 0.843 
d 56 35.88 33.17 30.28 32.52 

(3/2n 0.98 0.999 0.996 1.009 1.009 
c 0.05 0.01 0.21 -0.07 -0.06 

Notes: 
1. White gaussian noise with zero mean and standard deviation CJ = 1 (cf. Fig. 3a). 
2. Impulses with gaussian distribution of amplitudes (mean, 1; standard deviation, 0.25) occurring 

according to a Poisson process, and of random sign. 
3. Same noise as 2 but impulses with positive sign (cf. Fig. 3b). 
4. b(rJ = n(tJ + xi=, ~(t,_~) exp(-kL) with I = 2.3 (cf. Fig. 3~). 
5. b(r,) = n(t,) + \-;“=, n(f,-,) exp(-kl) with 1 = 0.69. 

Table IV (columns 4 and 5). Column 1 gives the case of white gaussian noise; 
(m=O, cJ= 1). 

For all types of noise, we have T = 5 and a sampling rate of 41 points per period. 
It is clear that estimations are rather good in all cases, showing the robustness of the 
algorihtm. We can notice, however, that impulses with a given sign affect the 
estimation of the shifting, and noise with memory that of the amplitude. 

3. Conclusions. Application of our algorithm to simulated data has shown the 
following results: 

At a given level of noise, the estimation is better when the number of obser- 
vations is larger (increase of T or f,); 

as far as we have tested it, the method is rather robutst; 
the best estimate is that of (3, which is in agreement with the theoretical results 

of Walker (Var(c.5) N l/N3) (Eq. (6)); 
the poorer estimate is that of $, which is due to the arctan transform to get $ 

from 2 and B. 
When we have no a priori knowledge of the signal-to-noise ratio; it is not possible 

to know the quality of the stimation we obtain from the algorithm. Only a 
comparison of the stimation with the data shows if the estimation is acceptable or 
not. If it is not, a new estimation can be looked for after the sampling rate and/or the 
length of data used has been increased. For instance, with CJ = 4 and f, = 41 Hz, we 
have found (Table II) that the estimation given by the algorithm is correct only when 
T> 10. 

5.2. Application to Experimental Data 

As an illustration, we have applied the algorithm to data from a balloon 
experiment. 
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Details of the experiment are given in [ 131. For our purpose here, it is sufftcient to 
say there was a measure of the horizontal electric field, by the method of the double- 
probe, and a magnetometer for the attitude restitution. The payload was rotated by a 
motor, thus eliminating offsets as DC shifts on a sinusoidal signal. In fact, the 
rotation speed is not uniform and it is thus necessary to make adjustments on rather 
short lengths of signals. 

The magnetic field data and the estimated signal are given in Fig. 4a, and the 
electric field data and its estimation in Fig. 4b. It is clear that the magnetic field data 
look much more like a sinusoid than the electric field. This is due to the fact that the 
vertical electric field, much more intense than the horizontal electric field, appears as 
noise when the payload, due to its move, is not perfectly horizontal. Nevertheless, the 
estimation is very good on both signals. 

5.3. Comparison with the M.E.M. algorithm 

An alternative to our method is the determinatiohn of the frequency first by a 
maximum entropy method (M.E.M.), and the determination of the other parameters 
by a linear regression. 

Without undertaking a complete comparison of both methods, we applied them to 

FIG. 4. Application of the method to experimental data: (a) magnetometer signal; (b) horizontal 
electric field. 
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TABLE V 

Comparison of Our Method with an M.E.M. Algorithm, T= 10 set‘ f, = 5 1.2 Hz” 

Proposed method M.E.M.algorithm 

fJ .2 $J j-0 c I” .,a fJ f” c’ lb 
set (set) 

0 I .ooo 35.00 1 .ooo 0.000 4 1.000 35.00 1.000 0.000 5 
0.5 I .024 30.37 I.001 -0.014 7 1.025 32.03 1 .ooo -0.013 5 
1 1.05 1 25.54 1.002 -0.029 6 1.051 29.15 1.000 -0.027 5 
2 1.112 15.42 1.005 -0.059 7 1.067 48.76 0.987 -0.041 5 
2.5 1.146 10.26 1.006 -0.075 1 1.046 59.14 0.981 -0.048 5 

‘The M.E.M. algorithm has been used with 100 filter coefficients and the determination of the 
maximum of the spectrum with a step of 0.003 Hz. 

h f = qzir. 
” t: computing time (in seconds). 

the same simulated data, consisting of 10 periods of signal with white gaussian noise, 
sampled at about 50 points per period. The true values of the parameters of the signal 
are x2 = 1, f = 1, Q = 35”, C = 0. The results given by both methods, for noise with a 
standard deviation u that varies from 0 to 2.5 are given in Table V, where the 
computation time is also indicated. We have used the M.E.M. program MESA from 
Claerbout [ 141. 

According to our results, both methods give rather equivalent estimations with 
computation times of the same order of magnitude. For LT > 2, our method is slower 
but gives a somewhat more accurate estimation of the frequency. 

6. CONCLUSIONS 

The algorithm we have described allows accurate determination of the parameters 
of a sinusoidal signal with noise, according to the least-squares method without the 
need for a rather precise set of starting values, as is the case with classical nonlinear 
least-squares algorithms. 

A limitation (not specific to this algorithm) is the impossibility of obtaining a test 
of the precision of the estimation, and it is always necessary to compare the 
estimation with the data. But the algorithm is robust and leads to bad estimations 
only for very large noise-to-signal ratios. This method is competitive with the use of 
the M.E.M. followed by a linear regression. 
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APPENDIX A: PRELIMINARY RESULT 

If wT is large enough, finding the minimum of S(G) = jl [y(t) -C(l)]* dt is 
equivalent to finding the maximum of F(G) = jry(t) $(I) dt. 

Let < and 5’ be two models differing only by the values of the estimated 
parameters. To say that s’is the best estimate of the model means that, whatever s” is 
different from s may be, we have 

S(Q = CT [y(t) - S”(t)]’ dt < S(F) = [’ [y(t) - C’(t)]’ dt, 
Jo Jo 

so that 

1 T 

E(t)* dt - 2 jTi(t) y(t) dt < (I s”‘(t)’ dt - 2 IT f’(t)y(t) dt. 64.2) 
0 0 0 0 

Substituting (1) for s’, one has 

Z= ‘f(t)*dt 
I 0 

= 
T (sin(2c3T + fi - sin 2fi + 2e(sin(GT + $) - sin a] . 

Let us now consider a variation of c3 with 2, c, and 6 fixed. Then Z is the sum of 
two terms: the first one is independent of the value of (3; the second is a function of 
G but with an absolute value less than 

1 J2 - 
(3 

7+4J?c. 

The ratio of the second term to the first is thus 

1 272 + 437C 1 x2+8x 3.38 
LiT s?‘/2+c’ =(3T x2+2 ‘(3T’ (A.3) 

where x = g/e and when c3T is large enough, the first term is dominant, and, as a 
consequence, I is practically no longer dependent on (3. (A.2) then reduces to 

1 
T 

f(t)y(t) dt > 
i 

’ s”(t)y(t) dt 
0 0 

(A-4) 

or P(sJ > F(F), which is the announced result. 



ESTIMATION OF ASINUSOIDAL SIGNAL 363 

APPENDIX B: STUDY OF D(c3)=J‘,Ts(t)$(c) dt 

With s(t) = & cos(wT + 4) and {(t(t) = L? cos(GT + fi we have 

D(G) = jr s(t) g(t) dt 
0 

= g [sin(wT + 4) - sin #] + CCT + $ [sin(GT + J) - sin jY] 

+ & [sin((G + o) T+ f+ 4) -sin@ + $j]/ . (B-1) 

The first two terms do not depend on 6. All periodic terms in (3 have period 2n/T. 
As a consequence, D(G) is a function with pseudo period 2x/T. 

The term 

d-22 1 
2 ~3-w [sin((G - w) T + $- 4) - sin@- #)I, 

except if (&- 4) = 742, h as its extremum when c3 = w, and its extremal value is 

F T cos($- 4). 03.2) 

The term 

J/J 1 
2(3+w [sin((G + 0) T+ 8+ 9) - sin@+ $)I 

has an absolute value which remains less than &L?‘/(w + (3). 
The term 

is extremum when 

c [sin(GT + $) - sin f] 

f COS(GT + &j - -$ [sin(&T + $> - sin $1 = 0 

or 

(3T = sin(6T + fi - sin $ 
cos(c.GT+ $) * (B.3) 
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The value of the extremum is A?CT cos(G,,T + f) where G,,, is the root of (B.2) 
As a consequence of these results, we see that the function D(G) attains its 

maximum near the true value of the frequency when 

or 

and 

COT I cos@- #)I % 1 (B.4) 

F T 1 COS(~- #)I 9 JCT ( COS(C~,T + $)I. 

To the second condition can be substituted 

d2 

or 

2 T (cos(& qb)I s J?CT 

5 I cos@- #)I 9 c. 

(B-5) 

(W 

APPENDIX C: INFLUENCE OF THE RANDOM PART OF F(G) 

The random part of F(G) is 

N(G) = 1’ n(t) i’(t) dt = S? 1’ n(t) cos(Gt + fi dt + “(r n(t) dt. (C.1) 
0 0 0 

To study its effects, we have to specify the statistical properties of the noise. The 
analysis has been made for a white gaussian stationary noise with zero mean. This 
noise is entirely determined by its mean value 

and its autocorrelation function 

(W) = 0 (C.2) 

qt,, t2) = R(t* - tl) = R(T) = U26,(T). (C.3) 

Computation of the mean of N(G) is immediate 

(N(G)) = (1’ n(t) f(t) dt) = 1’ s(t)+(t)) dt = 0. 
0 0 

(C.4) 
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Its variance is 

365 

Var(N(c3)) = ( J’ lr n(t ,) n(t,) {(f ,) f(rz) fff , &) . 
0 0 

The computation, more tedious but without difficulty, gives us 

Var(N(&)) = 0’ 
1 
C*T + 2 G [sin(&T+ $) - sin J)] 

+$ T++-(sin2(GT+&--sin2& 
[ II . (C.5) 

If (3T is large enough, we can use the approximate expression 

Var(N(G))= ($+ c2) To2 

and the standard deviation is then 

VW 

r-7) 

It increases like the square root of T when the maximum of D (for (3 N w) 
increases like T (B.2). Hence, the signal-to-noise ratio increases like T”*. 
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